分数的基本性质说课稿

时间:2023-11-30 15:10:13
分数的基本性质说课稿合集八篇

分数的基本性质说课稿合集八篇

作为一名人民教师,编写说课稿是必不可少的,编写说课稿是提高业务素质的有效途径。我们该怎么去写说课稿呢?以下是小编精心整理的分数的基本性质说课稿8篇,希望能够帮助到大家。

分数的基本性质说课稿 篇1

把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。分数的基本性质数学说课稿,我们来看看。

分数的基本性质

1.使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题。

2.培养学生观察、分析、思考和抽象、概括的能力。

3.渗透形式与实质的辩证唯物主义观点,使学生受到思想教育。

教学过程

一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。

二、导入新课例

1.用分数表示下面各图中的阴影部分,并比较它们的大小。

1、分别出示每一个圆,让学生说出表示阴影部分的分数。

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2、观察比较阴影部分的大小:

(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

(2)阴影部分的大小相等,可以用等号连接起来。

3、分析、推导出表示阴影部分的分数的大小也相等:

(1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

4、观察、分析相等的分数之间有什么关系?

(1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)

(2)观察 例2.比较 的大小。

1、出示图:我们在三条同样的数轴上分别表示这三个分数。

2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

三、抽象概括出分数的基本性质

1、观察前面两道例题,你们从中发现了什么变化规律? 分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。

2、为什么要零除外?

3、教师小结:这就是今天这节课我们学习的内容:分数的基本性质 (板书:基本性质)

4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

四、应用分数基本性质解决实际问题

1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)

(1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。

板书:

教师提问:

(1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

(2)这个6是怎么想出来的?(这样想:2?=12,26=12,也可以看12是2的几倍:122=6,那么分子1也扩大6倍)

(3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

(4)这个2是怎么想出来的?(这样想:24?=12,242=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是102=5)

五。课堂练习

1、把下面各分数化成分母是60,而大小不变的分数。

2、把下面的分数化成分子是1,而大小不变的分数。

3、在( )里填上适当的数。

4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、分母是分子的4倍为:4、8、12、16无数个。

六、课堂总结今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好。

七、课后作业

1、指出下面每组中的两个分数是相等的还是不相等的。

2、在下面的括号里填上适当的数。

分数的基本性质(说课稿)

理解了分数的意义,认识真分数、假分数和带分数,掌握了假分数和带分数、整数的互化方法之后,就要学习分数的基本性质。

分数的基本性质在分数教学中占有十分重要的地位,它是约分、通分的理论依据,而约分、通分又是分数四则运算的重要基础。只有理解和掌握分数的基本性质,能比较熟练地进行约分和通分,才能应用四则运算的法则正确、迅速地进行分数四则运算。因此,分数的基本性质是分数的意义和性质这一单元的教学重点之一。掌握分数与除法的关系,以及除法中被除数、除数同时扩大或同时缩小相同的倍数商不变的规律,是学好分数基本性质的基础。

学生在学习和掌握分数的基本性质过程中,叙述性质内容时常常把分子、分母同时乘上或者除以相同的数(零除外)中的同时零除外丢掉。出现这类问题的原因是:对分数的基本性质没有真正的理解;对零为什么要除外的道理也不太清楚。分数基本性质是建立在:分数的意义、商不变的性质的基础上学习的,由于学生进入高年级,抽象思维有了一定的基础,在培养学生探索规律、应用一些数学方法进行迁移类推、思维的严密性以及思维的灵活性等方面,都应该进一步予以加强。这种思想方法以及能力的培养,对今后研究统计知识及其学生的终身学习都具有非常重要的作用。

分数的基本性质是以分数大小相等这一概念为基础展开研究的,由于学生在中年级已经对商不变的性质有了较深入的理解,所以在教学实践中要有意识的加强分数与除法之间的联系,以便把旧知识迁移到新的知识中来。

在教学中,采用小组合作学习的办法,通过给3张纸涂色、折 ……此处隐藏11251个字……四单元的内容《分数的基本性质》。

本节内容属于“数与代数”知识领域。在学生学习了分数的意义、分数大小的比较的基础上进行教学的。又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据。为学生今后学习分数加减法计算、比的基本性质打下基础。因此,本节课的内容尤为重要,起到承前启后的作用,尤为重要。

本节教材围绕着分数基本性质的得出与应用,安排了两道例题。通过例1,概括出分数基本性质。通过例2,运用、巩固分数的基本性质。练习联系现实生活,让学生了解可以依据分数基本性质解决的实际问题。如练习十四的第2题、第5题、第9题和第10题。有利于通过应用,促进学生掌握分数的基本性质,也有利于培养学生的数学应用意识。在本节教材中,还穿插安排了一个“生活中的数学”栏目,介绍了分数在日常生活中的一些应用。涉及洗手液的使用方法、足球比赛的进程、照相机的曝光速度。这些例子,有助于引起学生的兴趣,关注分数在现实生活中的种种应用。

以上我对教材的分析,下面我对学情和教法进行分析。五年级的学生认知结构中已经具有了抽象概念,因而具有逻辑推理能力,新旧知识迁移的能力,这些能力为本节课的学习做好了充分的准备。依据学生的认知规律,我在本节课的教学方法中力求做到为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以多种感官参与学习的全过程。我主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结等教学方法。

根据以上分析。我认为本节课的教学目标有以下几点:

1、经历探索分数的基本性质的过程,理解分数的基本性质。

2、在教学过程中,发展学生合理的推理能力,并清晰的阐述自己的观点。

3、培养学生在合作中逐步形成评价与反思的意识。

4、在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。

我认为本节课的教学重点:理解、掌握分数的基本性质。

难点:发现和归纳分数的基本性质,以及应用它解决相应的问题。

下面说说我的教学过程:

我将本课的教学设计以下几个环节,

一、设疑激趣,引入新课

教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。

首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?

这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。

二、自主探索,学习新知

新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。

1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。

2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变?

学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。(随着学生的回答,老师将板书的三个分数用“=”连接,给出等式。)

3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的? (教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

师:谁能用一句话把这个变化规律叙述出来呢?

生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。

师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。

5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。

结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。

6. 教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。 学生自己小结方法。

教育家波利亚指出:学习任何新知的最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。

三、分层练习,巩固深化

只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。

1、涂一涂练习14,第1、7题。

因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。

2、说一说完成练习14,第8题

我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

3、想一想:第5、9、10题(选择一题做为作业)

在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。

四、畅谈收获,小结全课

让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。

整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。

《分数的基本性质说课稿合集八篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式